Electron Cooling R&D

RHIC PROGRAM REVIEW July 7, 2005

Presented on behalf of the many people who contribute to the electron cooling R&D effort by

Ilan Ben-Zvi

The objectives and challenges

- Increase RHIC luminosity: For Au-Au at 100 GeV/A by ~10
- Cool polarized p at injection
- Reduce background due to beam loss
- Allow smaller vertex

- Cooling rate slows in proportion to $\gamma^{5/2}$.
- Energy of electrons 54 MeV, well above DC accelerators, requires bunched e.
- Need exceptionally high electron bunch charge and low emittance.

R&D issues

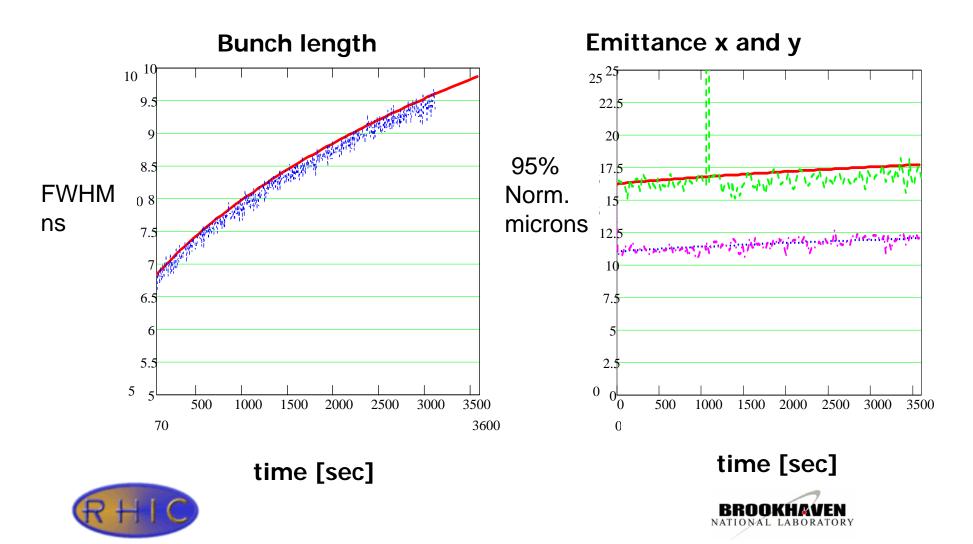
- Understanding the cooling physics in a new regime to reduce uncertainty
 - understanding bunched beam, recombination, IBS, disintegration
 - what is the exact form of the friction force, use direct simulations
 - cooling dynamics simulations with some precision
 - benchmarking experiments
 - stability issues
- Developing a high current, energetic, magnetized, cold electron beam. Not done before
 - Photoinjector (inc. photocathode, laser, etc.)
 - ERL, at x20 of state-of-the-art
 - Beam dynamics of high-charge magnetized beam
- A very long, super-precise solenoid (30 m long, 2 Tesla, 8x10⁻⁶ error) – if we used magnetized cooling.

Impact of cooling theory

- Significant progress made in theory, leading to significant changes in the cooler design, e.g. superconducting gun.
- Two alternative cooling approaches are being considered:
 - Magnetized cooling
 - Non-magnetized cooling
- Consequence: Uncertainty in beam parameters
- Consequence Some milestones delayed:
 - Start to end simulation
 - Completion of gun
 - Superconducting solenoid prototype.

Status of IBS before 2004, and 2004-2005 experiments

- IBS in RHIC was estimated based on average growth of all bunches.
- In cooling simulations simplified approximate formulae were used.

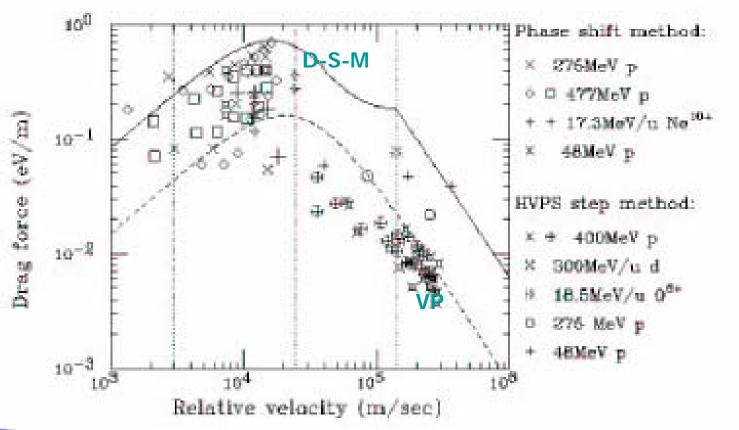

- Heating only from IBS.
- Measured bunch length, emittance.
- Measured bunches with various intensities and emittances.
- Detailed comparison of various theoretical models of IBS.
- Benchmarking of theory accomplished.

RHIC IBS experiment (2005)

Measured both planes, both rings, fully coupled Good agreement to theory, but over limited time span

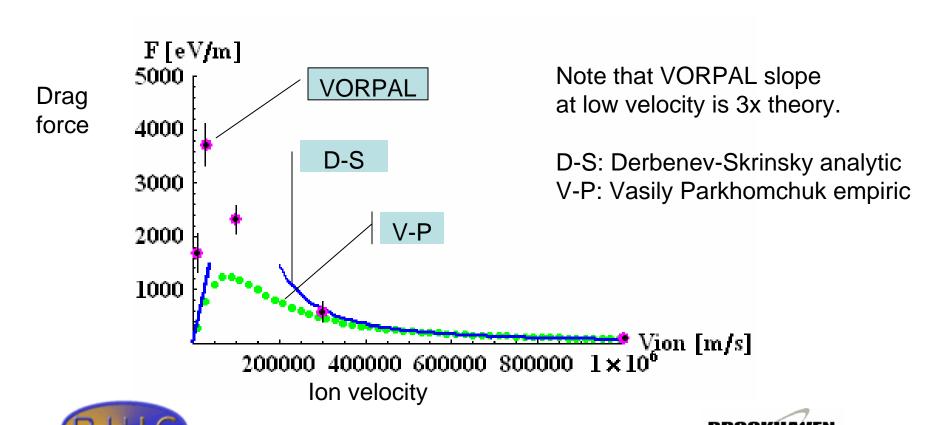
VORPAL code (Tech-X, Colorado): Simulate the friction in binary collisions

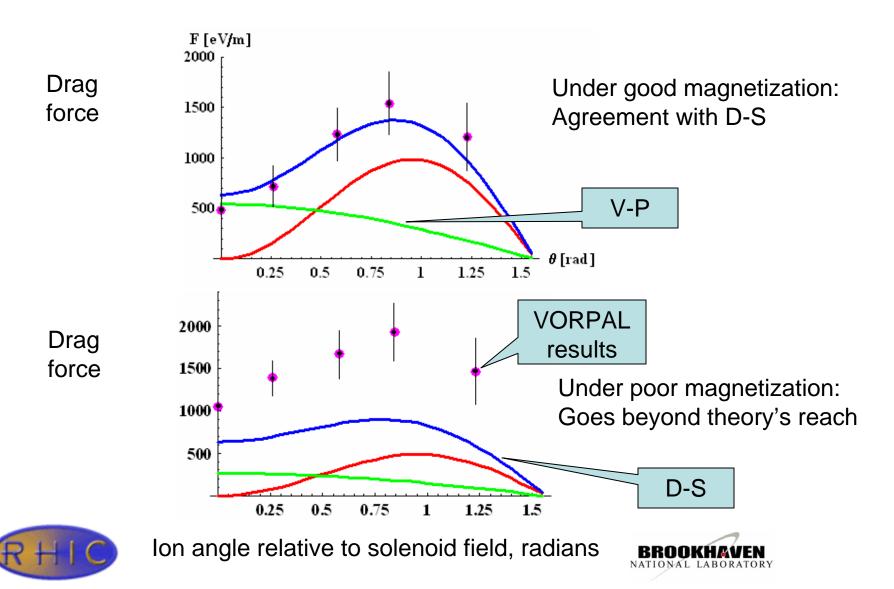
Early 2002 initiated SBIR with Tech-X. Goals:


- Obtain accurate friction and diffusion coefficients
 - Resolve discrepancies in analytical theory
 - Determine validity of Z² scaling
 - Understand effects of space charge on friction
 - Understand the effects of magnetization
 - -from weak to strong
 - effect of field errors
 - What happens at small Coulomb log, 1 ~ 2
 - Provide table of coefficients for dynamic codes

Uncertainty in the experimental and theoretical scene

Y-N. Rao et al.: CELSIUS, Sweden'2001, longitudinal friction:




VORPAL's Friction force, RHIC parameters

very good magnetization:

B=5T;
$$T_{e,tr}$$
=400 eV, $V_{ion, trans}$ =0

VORPAL guidance

Summary - VORPAL

- Limited benchmarking of analytic formulae for magnetized cooling made
- Simulations of RHIC parameters started
- Benchmarking with experiments started
- The code is powerful, break-through results, objectives will be met.

Cooling dynamics codes

- Collaborations put in place with BINP Novosibirsk in 2000 and JINR Dubna in 2001.
- We got the cooling dynamics codes SimCool from BINP and BetaCool from JINR.
- Years of development spent to evolve the codes to RHIC needs and gain confidence, including benchmarking between the two codes.
- Many physics effects/models were added or improved and benchmarked.

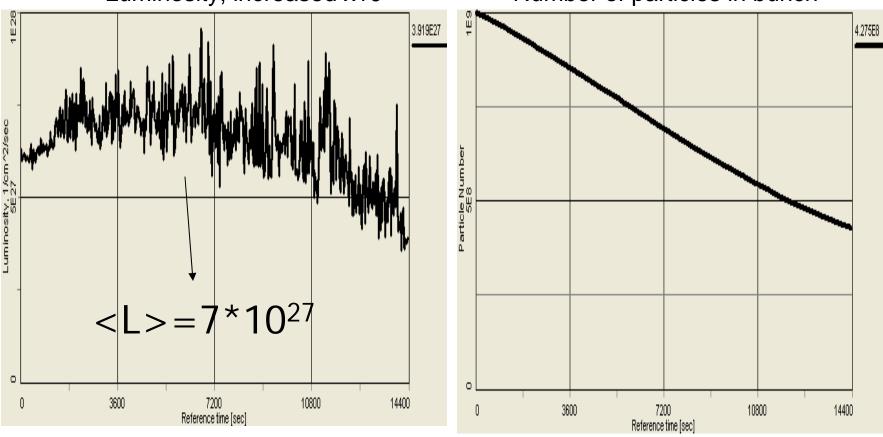

IBS models in dynamic codes benchmarked and extended

- Accurate models of IBS for Gaussian distributions implemented & benchmarked in the JINR BetaCool code:
 - Martini's model
 - Bjorken-Mtigwa model
- IBS models under cooling: still to be benchmarked:
 - Detailed (by Burov)
 - Core-tail (Fedotov et al.)
 - Bi-Gaussian (by Parzen)

BetaCool: Luminosity with / without magnetized cooling, Au 100 GeV/A

$$> < L > = 7 * 10^{27}$$

E-cooling: factor of 10 increase in average luminosity per store



Time into store (seconds)

Non-magnetized cooling, with Q=5nC, ϵ_N =3 μ m, σ_e =4.5mm

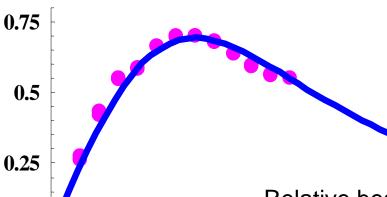
Luminosity, increased x10

Time into store (seconds)

Beam experiments towards highenergy electron cooling

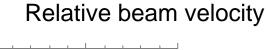
Beam experiments on low-energy coolers:

- Accurate measurement of cooling force and code benchmarking.
- Benchmark new models of IBS required to treat accurately a distribution shrinking under cooling.
- Create conditions expected in High Energy Cooler and study
 - magnetized cooling with small Coulomb logarithm
 - effect of solenoid errors
- Two runs produced a wealth of results.

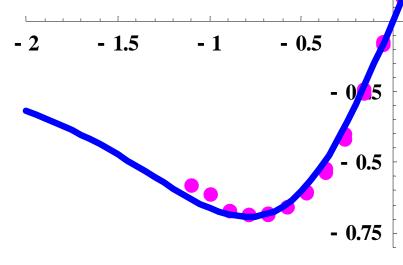

Fitting V_{eff} from basic principles, March 5 data: B=0.12T, $I_e=300mA$

Drag force, average over beam

0.5


0.25

Slope measured accurately. V_{eff} measured accurately, and found consistent with magnet errors (inside range).



1

0.5

V[104 m/s]

Fit to Derbenev analytic theory. Slope larger than theory by factor ~3. Indication for agreement with VORPAL.

1.5

Schematic Layout of Magnetized Cooler

Merge beams with two weak dipoles with solenoid focusing to minimize dispersion and avoid coupling.

RF frequency: 703.5 MHz

Charge: 20nC/bunch

Repetition frequency: 9.4 MHz

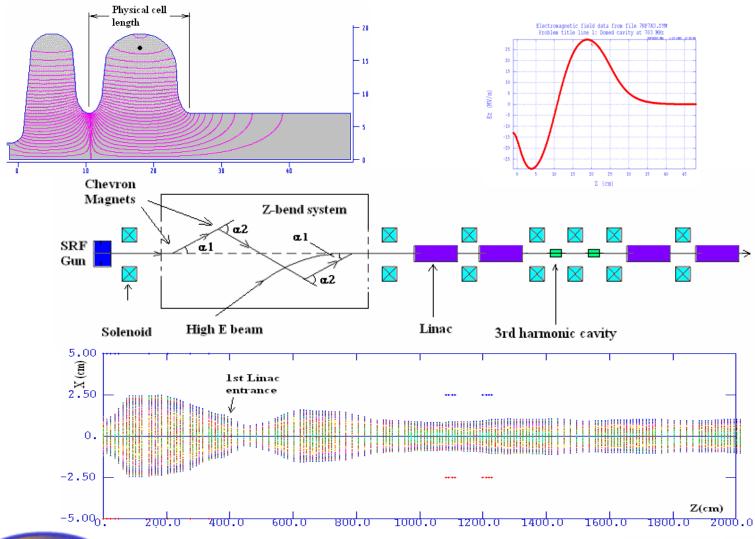
$$B_S \sigma_S^2 = 500G \left(10mm\right)^2$$

 $\mathcal{M} \sim 380$ mm.mr

Stretcher / compressor with large M56

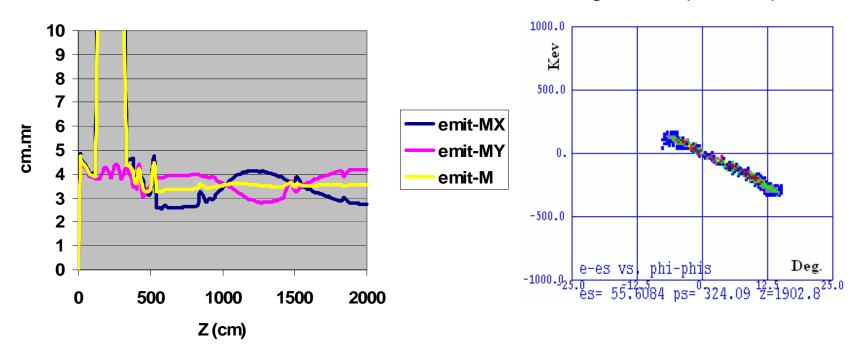
and zero M51, M52

Use two solenoids with opposing fields to eliminate coupling in the ion beam. A quadrupole matching section between the solenoids maintains magnetization.


The electron machine R&D

- Beam dynamics
- Photocathodes, including diamond amplified photocathodes
- Superconducting RF gun
- Energy Recovery Linac (ERL) cavity
- ERL demonstration

Gun and ERL

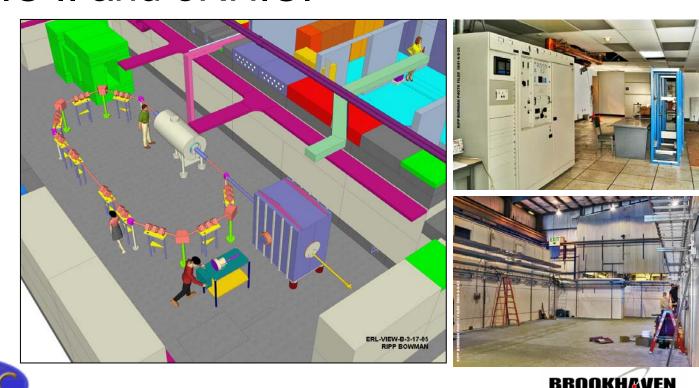


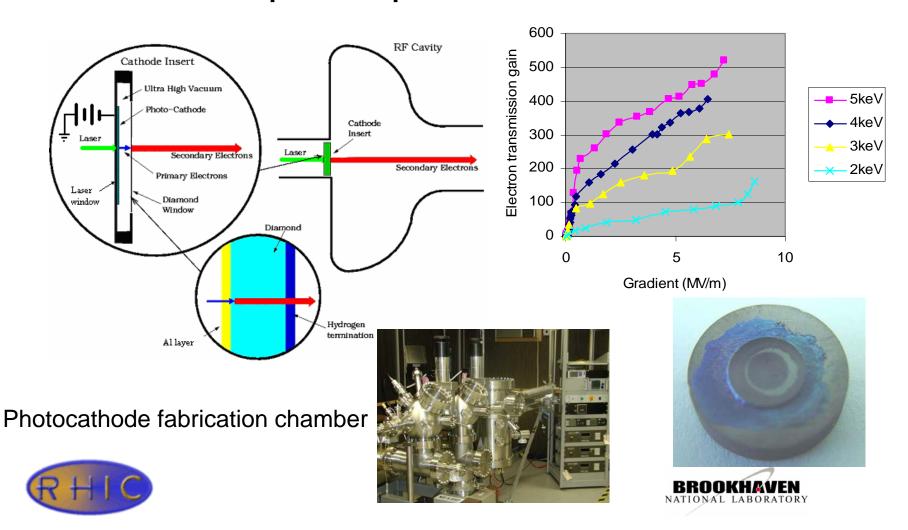
Emittance, 20 nC, magnetized, at end of linac

Transverse emittance vs. position

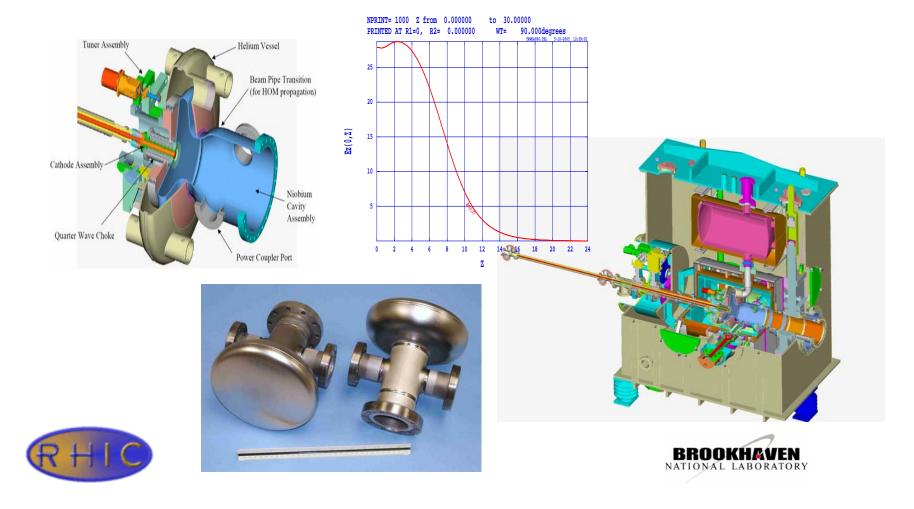
Longitudinal phase space

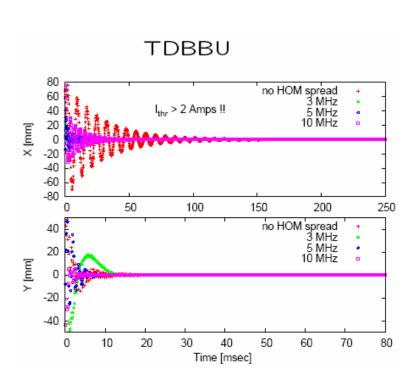
Final transverse emittance (rms, normalized) is about 35μ. Following multi-variable optimization, 28μ.

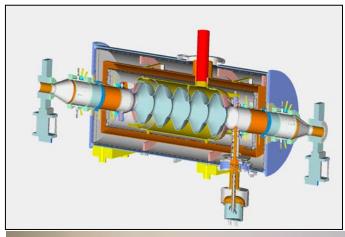

Longitudinal emittance at linac's exit is 100deg.keV



R&D ERL under construction

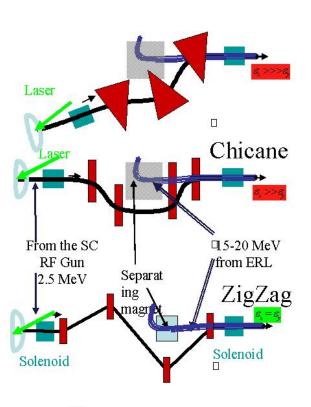

To study the issues of high-brightness, high-current electron beams as needed for RHIC II and eRHIC.

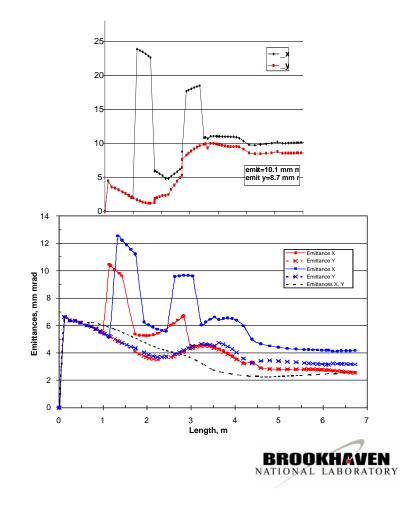

Diamond amplified photocathode



Ampere-class superconducting RF gun

SRF ERL cavity for ampere-class current.





BROOKHAVEN NATIONAL LABORATORY

Merging optics for ERL at high-charge

Sources of Funding, k\$

	FY03	FY04	FY05	FY06 (Exp./Req.)
DOE	900	2000	2000	2000/3000
BNL Prog. Dev/GPP	600	1200	1200	600
SBIR Tech-X	100	850	850	
SBIR AES			100	750
JTO Cryo-module	350	300	100	
ONR Photo-cathode		533		600
JTO ERL			500	500
Navy Photoinjector			600	1000
Total	1950	4883	5350	5450

Significant saving and a better R&D program are made possible by utilizing diverse resources.

ERL Material Funding Plan in \$K

2.0	0 ERL		Cumulative through FY05	FY06	FY07	FY08
2.1 St	perconducting R.F.Cavity	1714	1714	0	0	0
2.2 RF	Systems	4165	2280	1539	347	0
2.3 ln	jector Systems	2637	744	1393	500	0
2.4 Cr	yogenics Systems	508	382	126	0	0
2.5 Va	acuum Systems	717	0	577	140	0
2.6 Ma	agnet Systems	340	0	170	170	0
2.7 Ma	agnet Electrical Systems	551	0	551	0	0
2.8 El	ectron Beam Dump Systems	241	0	0	241	0
2.9 Be	eam Instrumentation	534	5	0	530	0
2.10 Cd	ontrol Systems	343	0	0	0	343
2.11 Sc	olenoid	1067	0	0	0	1067
2.12 Cd	onventional Facilities	290	290	0	0	0
2.13 Sa	afety Systems	81	81	0	0	0
2.14 E-	Cooling Installation	257	60	64	133	0
2.15 Pr	oject Services	518	156	150	133	79

Total Project 13963 5713 4569 2192 1489

E Cooling Labor Effort (FTE's)

	<u>FY04</u>	FY05
 Electron Cooling Group 	5.1	6.8
Other (matrix)	1.0	2.9

Timeline – funding driven. Need front loaded distribution to complete nearly 1 year earlier.

ID	ID Task Name		Duration	Start																				
ID.	0	Task Name	Duration	Start	2003			2004	_		005	_		2006				2007		_	2008			20
	•	- CV/FDI Design4	4240 days	Mon 2/3/03	Q1 Q2	? Q3 C	Q4 C	21 Q2	2 Q3	Q4 C	91 Q:	2 Q3	3 Q4	Q1	Q2	Q3 G	24 0	Q1 G	02 Q	3 Q4	Q1	Q2 0	33 0	24 Q1
1	-	e-CX / ERL Project	1349 days		T																	_		
2		Project Start	0 days																					
3		Develop & Procure the SC 5-cell RF cavity	822 days		J *										•									
59		5-Cell Cavity Preparation & String Assembly	501 days	Wed 2/4/04			1	•						7										
225		Cavity Mechanical Installation	673 days	Thu 9/4/03						-		+			•									
295		Assemble SRf Cavity & Associated Components	160 days	Thu 10/6/05									•		•									
303																								
304		SC Electron Gun Procurement	817 days	Mon 1/5/04			÷					+						_						
356		Photocathode System Development & Procurement	1056 days	Mon 2/3/03	-		-			-		+					÷	_	,					
370		Assemble & Test of Rf Gun & Associated Systems	918 days	Mon 2/2/04			•	_				+								•				
399		Design & Procurement of RF Gun to Dump Vacuum System	583 days	Mon 1/10/05								+						_	•					
408		Beam Dump Procurement	609 days	Mon 11/1/04						•		+					÷	_	ı					
419		Beam Instrumentation - Develop, Design & Procure	867 days	Mon 7/12/04					•	-							÷				Ÿ			
430		Gun-to-Cavity-to-Dump Controls	243 days	Fri 4/20/07														•				•		
454		Assemble Photocathode, Rf Gun, Cavity & Beam Dump for test	122 days	Mon 10/1/07																•		,		
464																								
465		Dev., Design & Procurement of ERL Magnets, PSs, Controls & Vacuum System	1026 days	Thu 1/8/04			7														7			
545		ERL Installation , All Systems	169 days	Mon 10/15/07																-		_		
566		Systems Integration Complete	10 days	Wed 6/4/08																				
570		System Run & Testing Begins	0 days	Wed 6/18/08																			6/18	
571		Project Complete	0 days	Wed 6/18/08																		+	6/18	

Summary

- A vigorous and sweeping R&D program was initiated a few years ago and is making good progress.
- Our theory, simulation and benchmarking experiments are close to providing us with a precise set of requirements for electron cooling of RHIC.
- Our electron beam dynamic simulations show that we should be able to generate the required beam.
- Progress made on experimental program to demonstrate the critical electron beam generating components.
- We conclude that our luminosity increase goal for RHIC-II (factor of 10) can be achieved.
- Moving \$1M from FY'08 to FY'06 will save the program about one year.

